396 research outputs found

    Accuracy and self correction of information received from an internet breast cancer list: content analysis.

    Get PDF
    OBJECTIVES: To determine the prevalence of false or misleading statements in messages posted by internet cancer support groups and whether these statements were identified as false or misleading and corrected by other participants in subsequent postings. DESIGN: Analysis of content of postings. SETTING: Internet cancer support group Breast Cancer Mailing List. MAIN OUTCOME MEASURES: Number of false or misleading statements posted from 1 January to 23 April 2005 and whether these were identified and corrected by participants in subsequent postings. RESULTS: 10 of 4600 postings (0.22%) were found to be false or misleading. Of these, seven were identified as false or misleading by other participants and corrected within an average of four hours and 33 minutes (maximum, nine hours and nine minutes). CONCLUSIONS: Most posted information on breast cancer was accurate. Most false or misleading statements were rapidly corrected by participants in subsequent postings

    The rapamycin-regulated gene expression signature determines prognosis for breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mammalian target of rapamycin (mTOR) is a serine/threonine kinase involved in multiple intracellular signaling pathways promoting tumor growth. mTOR is aberrantly activated in a significant portion of breast cancers and is a promising target for treatment. Rapamycin and its analogues are in clinical trials for breast cancer treatment. Patterns of gene expression (metagenes) may also be used to simulate a biologic process or effects of a drug treatment. In this study, we tested the hypothesis that the gene-expression signature regulated by rapamycin could predict disease outcome for patients with breast cancer.</p> <p>Results</p> <p>Colony formation and sulforhodamine B (IC<sub>50 </sub>< 1 nM) assays, and xenograft animals showed that MDA-MB-468 cells were sensitive to treatment with rapamycin. The comparison of <it>in vitro </it>and <it>in vivo </it>gene expression data identified a signature, termed rapamycin metagene index (RMI), of 31 genes upregulated by rapamycin treatment <it>in vitro </it>as well as <it>in vivo </it>(false discovery rate of 10%). In the Miller dataset, RMI did not correlate with tumor size or lymph node status. High (>75th percentile) RMI was significantly associated with longer survival (<it>P </it>= 0.015). On multivariate analysis, RMI (<it>P </it>= 0.029), tumor size (<it>P </it>= 0.015) and lymph node status (<it>P </it>= 0.001) were prognostic. In van 't Veer study, RMI was not associated with the time to develop distant metastasis (<it>P </it>= 0.41). In the Wang dataset, RMI predicted time to disease relapse (<it>P </it>= 0.009).</p> <p>Conclusion</p> <p>Rapamycin-regulated gene expression signature predicts clinical outcome in breast cancer. This supports the central role of mTOR signaling in breast cancer biology and provides further impetus to pursue mTOR-targeted therapies for breast cancer treatment.</p

    Translational Research from an Informatics Perspective

    Get PDF
    Clinical and translational research (CTR) is an essential part of a sustainable global health system. Informatics is now recognized as an important en-abler of CTR and informaticians are increasingly called upon to help CTR efforts. The US National Institutes of Health mandated biomedical informatics activity as part of its new national CTR grant initiative, the Clinical and Translational Science Award (CTSA). Traditionally, translational re-search was defined as the translation of laboratory discoveries to patient care (bench to bedside). We argue, however, that there are many other kinds of translational research. Indeed, translational re-search requires the translation of knowledge dis-covered in one domain to another domain and is therefore an information-based activity. In this panel, we will expand upon this view of translational research and present three different examples of translation to illustrate the point: 1) bench to bedside, 2) Earth to space and 3) academia to community. We will conclude with a discussion of our local translational research efforts that draw on each of the three examples

    Translational Research in Space Exploration

    Get PDF
    This viewgraph presentation reviews NASA's role in medical translational research, and the importance in research for space exploration. The application of medical research for space exploration translates to health care in space medicine, and on earth

    Futibatinib, an Irreversible FGFR1–4 Inhibitor, in Patients with Advanced Solid Tumors Harboring FGF/FGFR Aberrations: A Phase I Dose-Expansion Study

    Get PDF
    Futibatinib; Advanced solid tumors; AberrationsFutibatinib; Tumores sólidos avanzados; AberracionesFutibatinib; Tumors sòlids avançats; AberracionsFutibatinib, a highly selective, irreversible FGFR1–4 inhibitor, was evaluated in a large multihistology phase I dose-expansion trial that enrolled 197 patients with advanced solid tumors. Futibatinib demonstrated an objective response rate (ORR) of 13.7%, with responses in a broad spectrum of tumors (cholangiocarcinoma and gastric, urothelial, central nervous system, head and neck, and breast cancer) bearing both known and previously uncharacterized FGFR1–3 aberrations. The greatest activity was observed in FGFR2 fusion/rearrangement–positive intrahepatic cholangiocarcinoma (ORR, 25.4%). Some patients with acquired resistance to a prior FGFR inhibitor also experienced responses with futibatinib. Futibatinib demonstrated a manageable safety profile. The most common treatment-emergent adverse events were hyperphosphatemia (81.2%), diarrhea (33.5%), and nausea (30.4%). These results formed the basis for ongoing futibatinib phase II/III trials and demonstrate the potential of genomically selected early-phase trials to help identify molecular subsets likely to benefit from targeted therapy. Significance: This phase I dose-expansion trial demonstrated clinical activity and tolerability of the irreversible FGFR1–4 inhibitor futibatinib across a broad spectrum of FGFR-aberrant tumors. These results formed the rationale for ongoing phase II/III futibatinib trials in cholangiocarcinoma, breast cancer, gastroesophageal cancer, and a genomically selected disease-agnostic population

    Coordinated prophylactic surgical management for women with hereditary breast-ovarian cancer syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Women with <it>BRCA1 </it>or <it>BRCA2 </it>mutations have a substantially increased risk of breast and ovarian cancer compared with the general population. Therefore, prophylactic mastectomy (PM) and bilateral salpingo-oophorectomy (BSO) have been proposed as risk-reduction strategies for <it>BRCA1/2 </it>mutation carriers. We aimed to assess the feasibility of coordinated PM and BSO in hereditary breast-ovarian cancer syndrome.</p> <p>Methods</p> <p>High risk women for breast and ovarian cancer who underwent coordinated PM and BSO were included in this study. Clinical characteristics and surgical and oncologic outcomes were retrospectively reviewed.</p> <p>Results</p> <p>Twelve patients underwent coordinated PM and BSO. Ten had history of previous breast cancer. Autologous breast reconstruction was performed in ten patients. The mean age at surgery was 43 (range 34–65). Mean operating time was 9.3 hours (range 3–16) with a mean postoperative hospitalization of 5.4 days (range 4–8). Intraoperatively, there were no major surgical complications. Postoperatively, one patient developed an abdominal wound dehiscence, another reoperation for flap congestion; one had umbilical superficial epidermolysis, and one patient developed aspiration pneumonia. At a mean follow-up of 84 months, 10 of patients were cancer-free. Although no patients developed a new primary cancer, two developed a distant recurrence.</p> <p>Conclusion</p> <p>Coordinated PM and BSO is a feasible procedure with acceptable morbidity in selected high-risk patients that desire to undergo surgery at one operative setting.</p

    Phase Ib/II Study of the Safety and Efficacy of Combination Therapy with Multikinase VEGF Inhibitor Pazopanib and MEK Inhibitor Trametinib In Advanced Soft Tissue Sarcoma.

    Get PDF
    Purpose: Pazopanib, a multireceptor tyrosine kinase inhibitor targeting primarily VEGFRs1–3, is approved for advanced soft tissue sarcoma (STS) and renal cell cancer. Downstream of VEGFR, trametinib is an FDA-approved MEK inhibitor used for melanoma. We hypothesized that vertical pathway inhibition using trametinib would synergize with pazopanib in advanced STS. Experimental Design: In an open-label, multicenter, investigator-initiated National Comprehensive Cancer Network (NCCN)-sponsored trial, patients with metastatic or advanced STS received pazopanib 800 mg and 2 mg of trametinib continuously for 28-day cycles. The primary endpoint was 4-month progression-free survival (PFS). Secondary endpoints were overall survival, response rate, and disease control rate. Results: Twenty-five patients were enrolled. The median age was 49 years (range, 22–77 years) and 52% were male. Median PFS was 2.27 months [95% confidence interval (CI), 1.9–3.9], and the 4-month PFS rate was 21.1% (95% CI, 9.7–45.9), which was not an improvement over the hypothesized null 4-month PFS rate of 28.3% (P ¼ 0.79). Median overall survival was 9.0 months (95% CI, 5.7–17.7). A partial response occurred in 2 (8%) of the evaluable patients (95% CI, 1.0–26.0), one with PIK3CA E542K-mutant embryonal rhabdomyosarcoma and another with spindle cell sarcoma. The disease control rate was 14/25 (56%; 95% CI, 34.9–75.6). The most common adverse events were diarrhea (84%), nausea (64%), and fatigue (56%). Conclusions: The combination of pazopanib and trametinib was tolerable without indication of added activity of the combination in STS. Further study may be warranted in RAS/RAF aberrant sarcomas. ©2017 AACR

    Epithelial to mesenchymal transition is associated with rapamycin resistance

    Get PDF
    Rapamycin analogues have antitumor efficacy in several tumor types, however few patients demonstrate tumor regression. Thus, there is a pressing need for markers of intrinsic response/resistance and rational combination therapies. We hypothesized that epithelial-to-mesenchymal transition (EMT) confers rapamycin resistance. We found that the epithelial marker E-cadherin protein is higher in rapamycin sensitive (RS) cells and mesenchymal breast cancer cell lines selected by transcriptional EMT signatures are less sensitive to rapamycin. MCF7 cells, transfected with constitutively active mutant Snail, had increased rapamycin resistance (RR) compared to cells transfected with wild-type Snail. Conversely, we transfected two RR mesenchymal cell lines—ACHN and MDA-MB-231—with miR-200b/c or ZEB1 siRNA to promote mesenchymal-to-epithelial transition. This induced E-cadherin expression in both cell lines, and ACHN demonstrated a significant increase in RS. Treatment of ACHN and MDA-MB-231 with trametinib modulated EMT in ACHN cells in vitro. Treatment of MDA-MB-231 and ACHN xenografts with trametinib in combination with rapamycin resulted in significant growth inhibition in both but without an apparent effect on EMT. Future studies are needed to determine whether EMT status is predictive of sensitivity to rapalogs and to determine whether combination therapy with EMT modulating agents can enhance antitumor effects of PI3K/mTOR inhibitors
    corecore